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Landau–de Gennes theory of surface-enhanced ordering in smectic films
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A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a
generalization of de Gennes’ model for a ‘‘presmectic’’ fluid confined between two walls. According to the
theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an
intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in
that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film
thickness. It also predicts that a continuous transition from (N11)- to N-layer films is impossible without an
external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds
which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribu-
tion are discussed.
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I. INTRODUCTION

Several years ago Stoebeet al. @1# discovered that free
standing smectic-A (SmA) films of certain fluorinated
liquid-crystalline compounds could remain stable on be
heated to temperatures above that of the bulk SmA-isotropic
~I! phase transition. Instead of rupturing at the bulk transit
temperature, as do free-standing films of most SmA materi-
als, the films studied in Ref.@1# were found to undergo a
reproducible series of layer-thinning transitions at high
temperatures. At each transition, a film would spontaneou
decrease in thickness by one or more smectic layers. Su
quently, layer-thinning transitions have been observed i
small number of other compounds which exhibit eith
SmA-I transitions @2–4# or SmA-nematic ~N! transitions
@5,6#. The relation between the film thickness in number
layers N and the layer-thinning transition temperatur
Tc(N) has been found to be well fitted by a simple pow
law, N}t2n, where t5@Tc(N)2T0#/T0, with T0 approxi-
mately equal to the bulk transition temperature. Howev
the fitting exponentn is found to lie in a rather wide range
0.61<n<0.82.

Several mean-field theories have attempted to exp
layer-thinning behavior@7–11#. As was suggested by Stoeb
et al. @1#, these theories attribute the stability of a fre
standing smectic film above the bulk disordering tempera
to enhanced smectic ordering associated with the free
faces of the film, although the theories differ in the details
which this enhanced ordering arises. In most of these th
ries, it is envisioned that the thinning of anN-layer film
proceeds by melting of the interior layers into either a ne
atic @9# or a so-called ‘‘quasismectic’’ state@7,10#, after
which the excess fluid is squeezed out and the film is rec
stituted with a smaller number of layers. A different pictu
was postulated in Ref.@11#, according to which thinning oc
curs prior to the vanishing of the SmA order in the film
interior, on reaching certain critical points where the balan
between external compressive forces and film elastic fo
is lost. However, none of the theories has been able to
count for properties such as the values of the exponentn in
the power-law relation or the relative scarcity of suitab
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materials which exhibit layer thinning.
Recent visual observations and optical reflectivity stud

by Pankrantzet al. @12,13# of layer-thinning transitions in
compounds which undergo first-order SmA-I transitions re-
veal that thinning in these cases occurs by spontane
nucleation of dislocation loops, the growth of which cause
film to thin. A model of this process was described in R
@12#, predicting aTc(N) dependence which is functionall
different from the power-law relation but which also fits e
perimental data closely.

In this paper we develop a mean-field theory for lay
thinning in compounds that exhibitsecond-orderbulk phase
transitions. While, in principle, this restricts the applicatio
of the theory to those systems exhibiting bulk SmA-N rather
than first-order SmA-I transitions, we justify this treatmen
by the greater simplicity of its analysis and by the fact th
the observed layer-thinning behavior in both types of s
tems is similar@1–6#. The theory is a modification of an
earlier Landau theory described by de Gennes@14# for a
‘‘presmectic’’ fluid confined between two parallel solid wal
@15#. The latter theory was also considered in Ref.@11#, and
some aspects of it were utilized in the model described
Ref. @12#. In de Gennes’ original theory, surface-enhanc
SmA order is induced by an external-field-like coupling ter
in the Landau free energy, which islinear in the surface
smectic order parameter. Here, we modify that theory
including aquadratic term in the surface smectic order p
rameter while neglecting the external-field term. We will a
gue later that this model is more appropriate for fre
standing films. The original de Gennes theory is a
extended to include nonharmonic terms in the bulk fre
energy density, which is necessary to prevent divergen
occurring close to the bulk transition temperature in ear
studies based on this theory@11,12,14#. We derive a simple
analytic formula for the variation ofTc(N) with N which fits
experimental data very closely. This result demonstrates
the power-law relation deduced experimentally is only
approximate ‘‘fit’’ and that there is no universal value of th
exponentn. We also find one difference from previous inte
pretations of layer thinning, namely that the layer-thinni
transition temperaturesTc(N) approach a limiting tempera
©2001 The American Physical Society04-1
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A. N. SHALAGINOV AND D. E. SULLIVAN PHYSICAL REVIEW E 63 031704
ture for largeN which lies slightlyabovethe bulk mean-field
transition temperature. Nonetheless, this difference is c
patible with experimental measurements in the case of
tems with bulk SmA-N transitions@5,6#.

We also examine the conditions required for the existe
of a continuous transition fromN to (N61) layerswithout
nucleation of dislocation loops, which was predicted by
Gennes to occur according to his original model@14# for a
‘‘presmectic’’ fluid between two walls. By examining th
maximal possible changes in thickness due to deformat
of the smectic layers, it will be shown that the presence o
external field is necessary for such a continuous transit
and therefore that the latter does not occur in the pre
model. In place of that transition, we surmise that either fi
rupturingor growth of dislocation loops must occur.

This paper is organized as follows. In Sec. II we introdu
the generalized ‘‘presmectic’’ model for the the free ener
of a film and derive the corresponding Euler-Lagrange eq
tions and supplementary boundary conditions. We presen
analysis of solutions to the equations and calculate the e
librium free energy. In Sec. III we use the analysis to find
maximal temperatureTc(N) at which an N-layer film is
stable, showing that the model agrees with experimental
on layer thinning. Section IV examines whether the pres
model allows for a continuous transition fromN to (N61)
layers on varying the film thickness. In Sec. V we summar
the results as well as discuss possible mechanisms for
origin of the intrinsic surface contribution to the free energ

II. SMECTIC ORDER PARAMETER AND FREE ENERGY

Following Refs.@11,14#, we model a free-standing sme
tic film by a thin film of liquid bounded by two paralle
surfaces located atz56L/2, whereL is the film thickness.
The local smectic order in the film is represented by
complex order parameterC @16,17# whose real part charac
terizes the spatial modulation of the density, given by

C5c exp@ ıq0~z2u!1ıf0#, ~1!

wherec is the real amplitude,u is the layer displacemen
field, q0 equals 2p/d with d being the unstressed layer spa
ing, andf0 is an initial phase which we will choose to gua
antee that the film surfaces occur at minima of ReC. We
associate the maxima of ReC with the midpoints of the
smectic layers. In general,c and u are functions of three
spatial coordinates (x,y,z), but here we assume the syste
to be uniform in the (x,y) plane and consider only a depe
dence on distancez normal to the film. We take the Landa
free energy, per unit area, for the system to be

F5
1

2E2L/2

L/2

dzF rc21
1

2
gc41C~¹zc!21Cq0

2c2~¹zu!2G
1

1

2
r s@c2~L/2!1c2~2L/2!#2hs@c~L/2!1c~2L/2!#,

~2!
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whereC is an elastic constant. This free energy generali
that used in@14# by including both a quartic term (g/4)c4 in
the bulk free-energy density and quadratic termsr sc

2

(6L/2)/2 in the contribution of the surface layers to the fr
energy. Along with the terms2hsc(6L/2), wherehs could
be considered an external anchoring field, the form of
surface contributions in Eq.~2! are analogous to those intro
duced a while ago in Landau theories of wetting and critic
ity in semi-infinite systems and thin films@18#. A similar
Landau model, neglecting linear terms analogous to th
with hs but including additional nonlinear terms in the su
face order parametersc(6L/2), was recently applied to
surface-induced freezing@19#.

The bulk free-energy density (r /2)c21(g/4)c4 in Eq.
~2!, with g.0, is appropriate for asecond-orderbulk phase
transition, which occurs atr 50 in this mean-field model. In
this work we will only consider overheated films withr>0,
expressingr 5a(T2T* ), whereT* denotes the bulk mean
field transition temperature@17#. Besides the correlation
lengthj5AC/r @16,17# in the bulk isotropic phase, there i
an additional characteristic lengthjs5C/ur su associated with
the surfaces. By appropriate scaling~e.g., z/d→z, c/d3

→c, rd2/C→r , Fd/C→F, etc.!, one can regard all param
eters and variables in Eq.~2! as dimensionless as well as s
C51, although for clarity we will keepCÞ1 in the follow-
ing analysis, other than in numerical calculations.

Note that, in the absence of any smectic ordering@i.e.,
c(z)50 for all z#, the free energyF defined in Eq.~2! is
zero. This circumstance does not necessarily correspon
the absence of a free-standing film, since the latter wo
still be characterized by a nontrivial density profile and a
sociated film tension. However, such astructurelessfree-
standing film has never been observed and, presumabl
completely unstable with respect to fluctuations which le
to film rupturing @8#.

A. Euler-Lagrange equations

The Euler-Lagrange equations forc and u obtained by
minimizing Eq.~2! are

C¹z
2c5@r 1Cq0

2~¹zu!2#c1gc3, ~3a!

¹z~c2¹zu!50, ~3b!

with accompanying boundary conditions

6C¹zc~z56L/2!5hs2r sc~z56L/2!, ~4a!

q0@L22u~L/2!#52pN, ~4b!

whereN is the number of layers. The first boundary cond
tion Eq. ~4a! is obtained from variation of the free energ
while the second condition Eq.~4b! follows on assuming tha
the phase of the order parameter at the surfaces is fixe
order to guarantee that there is an integer number of laye
the range ofz between2L/2 to L/2. We have used the fac
that the film is symmetrical about its midpoint atz50, and
hence thatc(z)5c(2z), u(z)52u(2z) and, as a conse
quence,u(0)50. Note that the second boundary condition
4-2



he
lls

ec
es

E

n

ry

am

the
es

r

-

1,

e

nt

III

he

nd
gy

LANDAU–de GENNES THEORY OF SURFACE-ENHANCED . . . PHYSICAL REVIEW E63 031704
the same as that used by de Gennes@14# for a ‘‘presmectic’’
liquid confined between two walls, where it implies that t
smectic layers at both film surfaces stick exactly to the wa
The same condition was also used for a free-standing sm
film in @11#, while the latter work used undetermined valu
for c(6L/2).

The solution to the second Euler-Lagrange equation
~3b! can be expressed as

u~z!5AE
0

z

dz8c22~z8!, ~5!

where we usedu(0)50. In view of Eq.~4b!, the coefficient
A has to satisfy

Nd5L22AE
0

L/2

dz8c22~z8!. ~6!

Integrating Eq.~3a! once yields

C~¹zc!25rc21
1

2
gc42A2Cq0

2c221B, ~7!

where the constantB is chosen to satisfy the conditio
¹zc(0)50 ~which follows from symmetry! and hence is
given by

B52rc2~0!2 1
2 gc4~0!1A2Cq0

2c22~0!. ~8!

Since the right-hand side of Eq.~7! must be positive, and~for
r .0, g.0) is a monotonically increasing function ofc, it
is necessary thatc(z)>c(0) for all z. This in turn dictates
the sign of¹zc and hence the form of the first bounda
condition Eq.~4a!,

ACF rc2~L/2!1
1

2
gc4~L/2!2A2Cq0

2c22~L/2!1BG1/2

5hs2r sc~L/2!. ~9!

The latter equation determines the value of the order par
eterc(L/2) at the surface for given values ofA andc(0). If
a set of values ofA, c(0), andc(L/2) is known, thenc(z)
can be found as the inverse function to

z5ACE
c(0)

c(z)

dcF rc21
1

2
gc42A2Cq0

2c221BG21/2

,

~10!

which follows from Eq.~7!. Settingz5L/2 in Eq. ~10! pro-
vides an equation which together with Eqs.~6! and ~9! al-
lows one to determine the unknown quantitiesA, c(0), and
c(L/2). That equation can be written as

H„c~0!,A…50, ~11!

where we have defined the function
03170
.
tic

q.

-

H„c~0!,A…5
AC

L E
c(0)

c(L/2)

dcF rc21
1

2
gc4

2A2Cq0
2c221BG21/2

2
1

2
, ~12!

and wherec(L/2) is determined from Eq.~9!.
The routine we have used for obtaining solutions to

equations above is the following. First we scan over valu
of A. For each trial value ofA, we varyc(0). Foreach value
of c(0), we determine all the real, positive solutions fo
c(L/2) from the roots of Eq.~9!. Although there may be
multiple roots of that equation, only one of them~if any!,
when used asc(L/2) in Eq. ~11!, can satisfy the latter equa
tion for any given value ofL. We then find that pair of values
of c(0) andc(L/2) which satisfies Eq.~11!. There can be
none, one or two such pairs. This is indicated by Fig.
which shows typical curves of the functionH„c(0),A… vs
c(0) for hs50 andr .r s

2/C, where the significance of the
latter conditions will be described in Sec. III. IfuAu is suffi-
ciently large, thenH„c(0),A… is negative in the whole rang
of c(0) and there is no solution pair. For some range ofuAu,
the maximum ofH„c(0),A… as a function ofc(0) is posi-
tive. There are two pairs ofc(0) andc(L/2) in this case.
Both pairs correspond to physical solutions for differe
thicknessesL of the film. If A50 then the function
H„c(0),A… decays monotonically with increasingc(0). In
this case, there can be none or one solution pair~the point of
disappearance of a pair is considered in detail in Sec.!.
Finally, in scanning overA, we find that value ofA which
satisfies Eq.~6!. The integrand of Eq.~10! has an integrable
singularity at the lower limit proportional to@c2c(0)#21/2.
This term was subtracted out and integrated analytically. T
integration of the residual integral in Eq.~10! as well as that
in Eq. ~6! were perfomed by Simpson’s method.

B. Equilibrium free energy

Once a solution to the Euler-Lagrange equations a
boundary conditions is known, the equilibrium free ener

FIG. 1. The functionH„c(0),A… for r s520.2, r 50.08, g
50.04, hs50, L/d55, andC51.
4-3
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can be determined from Eq.~2!. Using integration by parts
and rearranging the termgc4, the latter equation can be re
written as

F5
1

2E2L/2

L/2

dz@rc1gc32Cc¹z
21Cq0

2c~¹zu!2#c

2
1

4E2L/2

L/2

dzgc41
1

2
C@c~L/2!¹zc~L/2!

2c~2L/2!¹zc~2L/2!#1
1

2
r s@c2~L/2!

1c2~2L/2!#2hs@c~L/2!1c~2L/2!#. ~13!

At equilibrium, the integral term in the first line is equal
zero due to Eq.~3a!. The nonintegral terms involvingr s
cancel each other because of the boundary conditions
~4a!. Using symmetry, the last equation then gives for
equilibrium free energy, denotedFeq ,

Feq52
1

2
gE

0

L/2

dzc4~z!2hsc~L/2!. ~14!

This expression is significant for showing that the equil
rium free energy in the presence of smectic ordering is n
essarily negative for positive fieldshs andg.

The equilibrium free energy can also be expres
through the work done by the external fieldhs . To find that,
consider the variation of the free energy due to variations
hs ,

dF52dhs@c~L/2!1c~2L/2!#, ~15!

where contributions resulting from any variationsdC(z)
about its equilibrium solution are zero. Integrating Eq.~15!
yields

Feq5Feq~hs50!2E
0

hs
dh@c~L/2,h!1c~2L/2,h!#,

~16!

wherec(z,h) is the solution to the Euler-Lagrange equatio
for a given surface fieldh. The second term in Eq.~16! is the
work done by the external field. Equation~16! generalizes an
expression given by de Gennes@14#. Note that ifr s50 and
g50, then the smectic order in an overheated film is sol
due to the external field andc(L/2,hs)}hs , as can be shown
from Eqs.~6!, ~9!, and~10!. In this case Eq.~16! givesFeq
52hsc(L/2), in agreement with Eq.~14!.

III. FILM CRITICAL LINE

In this section we consider an overheated smectic fi
with external fieldhs50 but nonzero surface coupling con
stant r s . We believe that these model conditions apply
free-standing films, due to the fact that the Euler-Lagran
equations~3a!, ~3b! and boundary conditions~4a! in this case
always admit a trivial solutionc(z)50, corresponding to the
absence of any smectic ordering. Nontrivial solutions exh
03170
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iting smectic order can occur, induced by ther s surface
terms in the free energy for sufficiently smallr}T2T* , pro-
vided r s,0 @see Eq.~9!# @20#. At higher temperature, the
bulk contributions to the free energy become dominant a
smectic ordering disappears. For a fixed value ofr s , we will
show that there is a ‘‘critical’’ line in the (L,T) plane at
which stable nontrivial solutions forc and u develop. To
find this line, we examine the solutions of the simultaneo
equations~9! and~11!. As seen in Fig. 1, the largest value o
H„c(0),A… occurs whenA50 andc(0)50, while H tends
to the value21/2 asc(0)→`. A nontrivial solution for
c(0) exists only ifH(0,0)>0, and the critical locus corre
sponds to the conditionH(0,0)50.

To find the limit c(0)→0 of H„c(0),0…, we express Eq.
~12! in terms of the variablex[c/c(0),

H„c~0!,0…5
AC

L
E

1

xmax dx

Ar ~x221!1
1

2
gc2~0!~x421!

2
1

2
, ~17!

where xmax[c(L/2)/c(0). Setting c(0)50, the integral
can be evaluated analytically to give

H~0,0!5
1

L
AC

r
ln@xmax1Axmax

2 21#2
1

2
, ~18!

wherexmax is to be calculated in the limitc(0)→0 from Eq.
~9!. On squaring and expressing in terms ofxmax, the latter
equation becomes

gc2~0!xmax
4 /21~r 2r s

2/C!xmax
2 2@r 1gc2~0!/2#50.

~19!

One can easily show that this equation has only one r
positive root forxmax @21#. The behavior of that root in the
limit c(0)→0 depends on the sign of the quantityr 2r s

2/C.
If r 2r s

2/C<0, thenxmax diverges@i.e., c(L/2) tends to a
nonzero limit# as c(0)→0. In such a case, Eq.~18! shows
that H(0,0) diverges logarithmically. Therefore, for anyr in
this range and arbitraryL, there is always a solution to th
equationH„c(0),0…50 with nonzero values ofc(0) and
c(L/2). On the other hand, whenr 2r s

2/C.0, the solution
for xmax remains finite in the limitc(0)→0. This finite so-
lution for xmax must satisfy the equation comprised of th
nonvanishing terms of Eq.~19!, namely,

~r 2r s
2/C!xmax

2 2r 50, ~20!

and, hence, is given by

xmax5A r̃

r̃ 21
, ~21a!

where
4-4



en

g

-
s

a-
-
-
lm
t

ti
s
ur
in

-

l

rs

tr

an
-

s is
tep
ory
ccur

the

er-
er
y

ng
s
the
the

the
-
ng
ns

rder
ing.
.
hat
r-

orts
ing
film,
n

e
rs.

LANDAU–de GENNES THEORY OF SURFACE-ENHANCED . . . PHYSICAL REVIEW E63 031704
r̃[
Cr

r s
2

5
js

2

j2
}~T2T* !. ~21b!

Setting H(0,0)50 in Eq. ~18! with xmax given by Eq.
~21a! yields the critical relation betweenr andL for a given
value of the parameterjs . Note that the critical locus in this
mean-field theory does not depend ong. Letting Lcr denote
the critical thickness at which the film disorders, for giv
temperature andjs , we have

Lcr

js
5

2

Ar̃
ln@xmax1Axmax

2 21#, ~22a!

or, equivalently@22#

Ncr5
2js

dAr̃
lnFAr̃ 11

Ar̃ 21
G , ~22b!

whereNcr5Lcr /d. For a fixed temperature,Lcr is the maxi-
mal thickness for which the film exhibits smectic orderin
Note thatLcr approaches infinity at the temperatureTs for
which r̃ 51, given by

Ts5T* 1
r s

2

Ca
. ~23!

~Despite the fact thatTs is quadratic inr s , this expression is
only valid for negativer s .! These results imply that, accord
ing to the present theory, a smectic film of arbitrary thickne
is stable relative to a film of isotropic liquid in the temper
ture rangeT,Ts , whereTs is larger than the bulk mean
field transition temperatureT* . Thus we obtain the interest
ing outcome that the surface-induced stability of the fi
does not vanish with increasing film thickness. This is due
the fact that, forT* <T<Ts , c(0)→0 as L→`, so that
there is no bulk free-energy penalty for forming a smec
film of arbitrary thickness@25#. This result in turn suggest
that, depending on the experimental conditions, meas
ments of the ‘‘bulk’’ smectic transition temperature may
fact detectTs rather than the true transition temperatureT* .

Here we compare the predictions of Eq.~22b! with the
experimental data of@5# for the compound 5O.6, which ex
hibits a very weak first-order SmA-N phase transition and
was reported to be well-fit by the power lawLcr5 l 0(T/T0
21)2n with fitting parametersT0560.35 °C,n50.82, and
l 051.2 nm. Although Eq.~22b! has a different functiona
dependence, it also fits the reported experimental data@5#
very well and with the same number of fitting paramete
For fitting purposes, we can expressr̃ 5(T2T* )/(Ts2T* ).
Figure 2 compares the power-law fit, represented by the
angles, with that obtained using Eq.~22b! ~solid line!, where
the best-fit parameters are found to be 2js5189.52 nm,T*
559.53 °C, andTs560.58 °C. Note that thefitted diver-
gence temperaturesT0 and Ts are quite close. In@5#, the
observed bulk SmA-N transition temperatureTAN was re-
ported to be 60.50 °C, in excess of our fitted mean-field tr
sition temperatureT* by approximately 1° but almost coin
03170
.
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o

c

e-
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ciding with Ts . It is worthwhile noting, however, that the
bulk transition temperatureTAN in @5# was determined by
observing changes in the film meniscus. If the meniscu
considered to be a pile of smectic layers of varying s
length, then it is plausible on the basis of the present the
to expect that the observed changes in the meniscus o
close toTs rather thanT* .

One other system with a bulk SmA-N transition has been
shown to exhibit layer-thinning transitions@6#, but this be-
havior occurs over a small thickness range, which makes
fitting less reliable than for the data of@5#. Equation~22b!
can also be compared with experimental data for lay
thinning transitions in compounds which undergo first-ord
SmA-I transitions@1–4#. We find that the equation generall
fits the data quite well in these cases, withTs'T0 where the
latter is obtained from the power-law fit, although resulti
in quite large differences ('5 °C) between the fitting value
of Ts andT* . Such differences could be expected due to
first-order nature of the bulk phase transition, since
mean-field parameterr 5a(T2T* ) should remain positive
at the bulk transition in such cases. The present model for
bulk free energy in Eq.~2!, however, is not applicable with
out further modification to smectic liquid crystals undergoi
first-order transitions, and we cannot make firm conclusio
about such cases here.

According to the recent findings in Refs.@12,13#, disloca-
tion loops spontaneously develop before the smectic o
disappears across a film which undergoes layer thinn
This implies that the film ‘‘critical’’ points predicted by Eq
~22a! may be preempted by the growth of such loops, so t
Eq. ~22a! only provides an upper bound for the true laye
thinning transition temperatures. The next section supp
the idea that, according to the present theory, during thinn
either the order parameter becomes zero across the
probably resulting in rupture of the film, or that dislocatio
loops develop.

FIG. 2. Comparison of the power-law fit~triangles! @5# with the
fit of Eq. ~22b! for the critical film thickness vs temperature for th
compound 5O.6. See the text for values of the fitting paramete
4-5
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IV. de GENNES TRANSITION

It was stated by de Gennes@14# that, on varying the film
thickness, a continuous transition fromN to (N61) layers
can occur without nucleation of dislocation loops in a ‘‘pre
mectic’’ fluid confined between two solid walls. Here w
address the question of whether such a continuous trans
is possible in the present model for free-standing films.
begin by considering de Gennes’ original model@14# in more
detail, in whichr s5g50 and smectic ordering at temper
tures above the bulk phase transition (r .0) is due solely to
an external fieldhs acting at the film surfaces.

Our solutions to the general model~see Sec. II! enable us
to find profiles of the density modulation ReC for various
thicknessesL. Figures 3 and 4 show the continuous evoluti
of the profiles asL varies from a four- to three-layer film an
from a five- to four-layer film, respectively. The calculatio
were carried out forhs50.2 andr 50.04 ~using units for
which C51). If a film with an initially odd number of layers
is compressed, the middle layer gradually disappears w
the other layers evolve into each other, although some
nature of the original middle layer remains for a range
thicknesses less than (N21/2)d. In contrast to the develop
ment of an edge dislocation@16,17#, the transition here from
N to (N21) layers takes place throughout the film, leaving
uniform in the (xy) plane. Thinning of an initially even-laye
film is different. In this case, the two original middle laye
merge into a single layer. An important aspect of these
sults is that the gradient¹zu of the strain diverges at the film
midpoint while the order parameterc(0)50 when L5(N
61/2)d @14#. We will see that the nonlinear termgc4 in the
bulk free energy does not change these results.

It was argued in@8# that free-standing films containin
different numbers of layers correspond to local minima

FIG. 3. The de Gennes transition from a four- to three-la
film: g5r s50, hs50.2, r 50.04, C51.
03170
-

on
e

ile
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f

t
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f

the free energy and are ‘‘stabilized’’ relative to each other
the presence of sufficiently large metastability barriers. T
interpretation was also used in@11#, where it is pointed out
that the thicknessL can be regarded as a free thermodynam
variable and that regions ofL with negative second deriva
tive ¹L

2Feq are thermodynamically unstable, since they c
respond to a negative effective compressibility modulus. F
ure 5 shows the dependence of the free energy onL for r
50.04 ~close to the bulk phase transition! and r 50.4 ~far
from the phase transition! for the original de Gennes mode
We note that the analysis presented in@11,14# is only valid
for j!L, which corresponds to larger. One sees that the
curve forr 50.4 has the cosinelike behavior predicted by

r FIG. 4. The de Gennes transition from a five- to four-layer fil
with the same parameter values as in Fig. 3.

FIG. 5. The dimensionless free energyF ~scaled as described in
Sec. II! of the de Gennes model (g5r s50) for hs50.2 and various
values ofr (C51).
4-6
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Gennes@14#, with the width of the alternating stable an
unstable zones approximately equal tod/2 @11#. The regions
centered atL5Nd60.5d are unstable. Figure 5 shows th
the zones of stability become narrower and the zones o
stability become wider while the amplitude of the oscill
tions increases with decreasingr.

The occurrence of the continuous ‘‘de Gennes transitio
hinges on being able to achieve a maximum change in th
nessuDLu[uL2Ndu equal tod/2. Next we examine whethe
this is possible in the present model for free-standing film

A. Maximal change in thickness

From Eq.~4b!, the relative change in thicknessDL/d can
be expressed in terms of the strain deformationu(z) as

DL

d
5

1

p
q0u~L/2!. ~24!

Expressingdz in terms ofdc using Eq.~7!, the relation Eq.
~5! for u(z) can be written as

u~z!5
AAC

2 E
h(0)

h(z) dh

hF1

2
gh31rh21Bh2A2Cq0

2G1/2,

~25!

where we defined the new variableh5c2. Substituting forB
from Eq. ~8!, this becomes

u~z!5
AAC

2 E
h(0)

h(z)

dh h21@h2h~0!#21/2

3F1

2
gh21S r 1

1

2
gh~0! Dh1

A2Cq0
2

h~0!
G21/2

.

~26!

Hence, the change in thicknessDL is given by

DL

d
5

Aq0AC

2p E
1

xmax
2

dx x21~x21!21/2

3F1

2
gh3~0!x21S r 1

1

2
gh~0! Dh2~0!x1A2Cq0

2G21/2

,

~27!

where x5h(z)/h(0) and xmax
2 5h(L/2)/h(0) as earlier.

Due to r andg being positive, an upper bound on the thic
ness change is obtained in the limitsh(0)→0 and xmax
→`. This yields

S uDLu
d D

max

5
1

2pE1

` dx

xAx21
5

1

2
. ~28!

Therefore, regardless of the nonlinear or surface contr
tions, the magnitude of the thickness change associated
the strainu(z) cannot exceedd/2 in our model for free-
standing films. In order to achieve the maximum changed/2
03170
n-

’’
k-

.

u-
ith

and hence a continuous transition fromN to N61 layers in
the sense of de Gennes, it is necessary thatc(L/2) remains
nonzero asc(0)→0, so thatxmax→`.

An analysis of our more general model shows that, ifhs
.0, thenc(L/2) always remains nonzero asc(0) tends to
zero and therefore thatuDLu/d can reach 1/2. On the othe
hand, if Cr.r s

2 and hs50, then the ratioc(L/2)/c(0)
[xmax remains finite asc(0) tends to zero. In these circum
stances, (uDLu/d)max,1/2 and a continuous transition from
N to (N61) layers is impossible. When the change in thic
ness reaches its maximal values, the smectic order vani
over the width of the whole film and the film free energ
tends to zero. Figure 6 shows the dependence of the
energyF on layer thicknessL/d, indicating that there are
‘‘absolutely forbidden’’ regions of the thicknessL, where the
free energy equals zero, which separate films of thicknes
Nd and (N61)d. These findings show that a continuous
Gennes transition fromN to (N61) layers is possible only if
hs.0. Otherwise, when the thickness reaches the forbid
zones, either the smectic order parameter becomes
across the whole film, probably resulting in film rupturing,
dislocation loops develop. The present considerations ca
distinguish between these scenarios, which require a dyna
cal treatment allowing for inhomogeneities in the plane
the film.

V. DISCUSSION

In summary, we have modified de Gennes’ theory@14# of
a ‘‘presmectic’’ fluid confined between two walls, generali
ing the surface contribution to the free energy by includi
quadratic terms in the surface order parameterc(6L/2). The
coefficientr s of these terms is considered to be an intrin
property of the liquid-crystalline material. In contrast wi
theories which attribute surface-induced smectic-A ordering
to external-field-like coupling terms@7,14#, the present
model always exhibits a trivial solution corresponding to t
absence of any smectic ordering. For negative values ofr s ,
films with smectic order can be stabilized for a finite range

FIG. 6. The dimensionless free energyF ~scaled as described in
Sec. II! vs thicknessL/d for hs50, r s520.2, g50.04 and r
50.04, (C51).
4-7
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temperatures above the bulk transition temperature. Th
fore, the present theory attributes the distinction betw
smectic materials which exhibit layer-thinning phenome
and those which do not to the sign of the surface coup
constantr s . An interesting and unexpected finding is th
Tc(N) tends to a valueTs.T* rather than to the bulk tran
sition temperatureT* with increasingN, and that films of
arbitrary thickness can be stabilized at all temperatureT
<Ts . This persistent finite-size effect is due to the fact th
surface-induced smectic ordering belowTs is confined to a
surface region of characteristic lengthjs and produces no
bulk free-energy penalty in the limit of infinite thicknessL.

In the original de Gennes model@14#, a presmectic film
can have a thicknessL different fromNd, and the dilation or
compression of the film can be as much as half the sme
layer spacing, which allows for a continuous transition fro
N to (N61) layers. We have analyzed the maximal co
pression and dilation which can occur in the present mo
and found that such a continuous transition is only poss
when the external fieldhs is nonzero. Films with free sur
faces, for which we have argued thaths50, cannot have
arbitrary values of the thickness due to the existence of
bidden zones that divide the allowed zones centered aL
5Nd. The smectic order parameter vanishes across the
as the thickness approaches the edges of the allowed z
which we presume must lead either to film rupture or to
nucleation of dislocation loops. The latter possibility acco
with the recent experimental observations of dislocat
loops during thinning transitions@13,12#. It is plausible that
n
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ul-
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such a nucleation process starts when the difference betw
the depths of the free-energy wells forN11 and N-layer
films ~see Fig. 6! becomes larger than the free-energy c
~per unit area! due to the line tension associated with t
dislocation loops@23,24#.

Although the origin of the surface parameterr s is beyond
the scope of this paper, several plausible mechanisms f
can be envisioned. One is due to coupling betwe
orientation-dependent molecular interactions and tran
tional symmetry breaking at the free surfaces of the film@9#.
Fluctuation effects could also play a role, as first pointed
by Selinger and Nelson@26# in a related context. Fluctua
tions of the smectic layers can affect the observed sme
order parameterc(z)exp@2q0

2^u(z)2&/2# by quenching the
mean-square fluctuations^u(z)2& of the layer-displacemen
field u(z) near the surfaces, due to the presence of surf
tension@27–29#. These fluctuation effects are not yet ful
understood, but might be represented by corrections to
temperature variabler. In the smectic phase, the mean-squa
fluctuation ^u2& has a profile@27–29# which is flat in the
middle of a film and very steep near the film surfaces, wh
implies that there is an effective correction tor which is
localized at the surfaces and hence represented by the su
coupling constantr s .
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