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Landau—de Gennes theory of surface-enhanced ordering in smectic films
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A Landau theory for surface-enhanced ordering in smektfcee-standing films is described, based on a
generalization of de Gennes’ model for a “presmectic” fluid confined between two walls. According to the
theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an
intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in
that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film
thickness. It also predicts that a continuous transition frdfr()- to N-layer films is impossible without an
external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds
which exhibit a bulk smectiéx to nematic phase transition. Possible origins of the intrinsic surface contribu-
tion are discussed.
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I. INTRODUCTION materials which exhibit layer thinning.
Recent visual observations and optical reflectivity studies

Several years ago Stoele¢al. [1] discovered that free- by Pankrantzet al. [12,13 of layer-thinning transitions in
standing smectiex (SmA) films of certain fluorinated compounds which undergo first-order 8rh transitions re-
liquid-crystalline compounds could remain stable on beingveal that thinning in these cases occurs by spontaneous
heated to temperatures above that of the bullASsotropic  nucleation of dislocation loops, the growth of which causes a
() phase transition. Instead of rupturing at the bulk transitiorfilm to thin. A model of this process was described in Ref.
temperature, as do free-standing films of mostASmateri-  [12], predicting aT.(N) dependence which is functionally
als, the films studied in Refl] were found to undergo a different from the power-law relation but which also fits ex-
reproducible series of layer-thinning transitions at higherperimental data closely.
temperatures. At each transition, a film would spontaneously In this paper we develop a mean-field theory for layer
decrease in thickness by one or more smectic layers. Subsgtinning in compounds that exhitsecond-ordebulk phase
quently, layer-thinning transitions have been observed in &ansitions. While, in principle, this restricts the application
small number of other compounds which exhibit eitherof the theory to those systems exhibiting bulk &N rather
SmA-| transitions [2—4] or SmA-nematic (N) transitions than first-order Sip-I transitions, we justify this treatment
[5,6]. The relation between the film thickness in number ofby the greater simplicity of its analysis and by the fact that
layers N and the layer-thinning transition temperaturesthe observed layer-thinning behavior in both types of sys-
T.(N) has been found to be well fitted by a simple powertems is similar[1-6]. The theory is a modification of an
law, Noct ™7, wheret=[T.(N)—Ty]/To, with T, approxi- earlier Landau theory described by de Genh&4| for a
mately equal to the bulk transition temperature. However;‘presmectic” fluid confined between two parallel solid walls
the fitting exponenv is found to lie in a rather wide range, [15]. The latter theory was also considered in Ré&fl], and
0.61=v=<0.82. some aspects of it were utilized in the model described in

Several mean-field theories have attempted to explaifRef. [12]. In de Gennes’ original theory, surface-enhanced
layer-thinning behaviof7—11]. As was suggested by Stoebe SmA order is induced by an external-field-like coupling term
et al. [1], these theories attribute the stability of a free-in the Landau free energy, which Imear in the surface
standing smectic film above the bulk disordering temperaturemectic order parameter. Here, we modify that theory by
to enhanced smectic ordering associated with the free sumcluding aquadraticterm in the surface smectic order pa-
faces of the film, although the theories differ in the details byrameter while neglecting the external-field term. We will ar-
which this enhanced ordering arises. In most of these theayue later that this model is more appropriate for free-
ries, it is envisioned that the thinning of alayer film  standing films. The original de Gennes theory is also
proceeds by melting of the interior layers into either a nem-extended to include nonharmonic terms in the bulk free-
atic [9] or a so-called “quasismectic” statg7,10], after  energy density, which is necessary to prevent divergences
which the excess fluid is squeezed out and the film is recomaccurring close to the bulk transition temperature in earlier
stituted with a smaller number of layers. A different picture studies based on this theoy1,12,14. We derive a simple
was postulated in Ref11], according to which thinning oc- analytic formula for the variation of ;(N) with N which fits
curs prior to the vanishing of the Snorder in the film  experimental data very closely. This result demonstrates that
interior, on reaching certain critical points where the balancehe power-law relation deduced experimentally is only an
between external compressive forces and film elastic forceapproximate “fit” and that there is no universal value of the
is lost. However, none of the theories has been able to a@xponentr. We also find one difference from previous inter-
count for properties such as the values of the expoment  pretations of layer thinning, namely that the layer-thinning
the power-law relation or the relative scarcity of suitabletransition temperatures.(N) approach a limiting tempera-
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ture for largeN which lies slightlyabovethe bulk mean-field whereC is an elastic constant. This free energy generalizes
transition temperature. Nonetheless, this difference is comthat used i 14] by including both a quartic terng(4)¢* in
patible with experimental measurements in the case of syshe bulk free-energy density and quadratic termg)?
tems with bulk SA-N transitions[5,6]. (£L/2)/2 in the contribution of the surface layers to the free
We also examine the conditions required for the existencenergy. Along with the terms- hgy(* L/2), wherehg could
of a continuous transition froml to (N*1) layerswithout  be considered an external anchoring field, the form of the
nucleation of dislocation loops, which was predicted by desurface contributions in Eq2) are analogous to those intro-
Gennes to occur according to his original mofied] for a  duced a while ago in Landau theories of wetting and critical-
“presmectic” fluid between two walls. By examining the ity in semi-infinite systems and thin filmgl8]. A similar
maximal possible changes in thickness due to deformationsandau model, neglecting linear terms analogous to those
of the smectic layers, it will be shown that the presence of awith hg but including additional nonlinear terms in the sur-
external field is necessary for such a continuous transitiorface order parameterg(=L/2), was recently applied to
and therefore that the latter does not occur in the preserurface-induced freezind9].
model. In place of that transition, we surmise that either flm  The bulk free-energy densityr )42+ (g/4)* in Eq.
rupturingor growth of dislocation loops must occur. (2), with g>0, is appropriate for aecond-ordebulk phase
This paper is organized as follows. In Sec. Il we introducetransition, which occurs at=0 in this mean-field model. In
the generalized “presmectic” model for the the free energythis work we will only consider overheated films witk=0,
of a film and derive the corresponding Euler-Lagrange equaexpressing =a(T—T*), whereT* denotes the bulk mean-
tions and supplementary boundary conditions. We present &ield transition temperatur¢17]. Besides the correlation
analysis of solutions to the equations and calculate the equiength &= /CIr [16,17 in the bulk isotropic phase, there is
librium free energy. In Sec. IIl we use the analysis to find thean additional characteristic lengéa= C/|r{ associated with
maximal temperaturel(N) at which anN-layer film is  the surfaces. By appropriate scalifg.g., zZd—z, /d®
stable, showing that the model agrees with experimental data, ;; rd2/C—r, Fd/C—F, etc), one can regard all param-
on layer thinning. Section IV examines whether the presengters and variables in ER) as dimensionless as well as set
model allows for a continuous transition frofto (N*=1)  c=1, although for clarity we will keel€# 1 in the follow-
layers on varying the film thickness. In Sec. V we summarizqng analysis, other than in numerical calculations.
the results as well as discuss possible mechanisms for the Note that, in the absence of any smectic ordeffing.,
origin of the intrinsic surface contribution to the free energy.;(z)=0 for all z], the free energy defined in Eq.(2) is
zero. This circumstance does not necessarily correspond to
Il. SMECTIC ORDER PARAMETER AND FREE ENERGY thg absence of a free-standing _fi_lm, sincg the Igtter would
still be characterized by a nontrivial density profile and as-
Following Refs.[11,14], we model a free-standing smec- sociated film tension. However, suchs#&ructurelessfree-
tic film by a thin film of liquid bounded by two parallel standing film has never been observed and, presumably, is
surfaces located a= *=L/2, whereL is the film thickness. completely unstable with respect to fluctuations which lead
The local smectic order in the film is represented by theto film rupturing[8].
complex order parameté¥ [16,17] whose real part charac-

terizes the spatial modulation of the density, given by A. Euler-Lagrange equations
The Euler-Lagrange equations fgr and u obtained by
W =yexdige(z—u)+i¢ol, (D minimizing Eq.(2) are
2. __ 2 2 3
where ¢ is the real amplitudey is the layer displacement CVzg=[r+Cap(Vu)°ly+gy, (33
field, qo equals 2r/d with d being the unstressed layer spac- ) _
ing, andg, is an initial phase which we will choose to guar- Vo(§7V,u)=0, (30)

antee that the film surfaces occur at minima ofdReWe

associate the maxima of Reé with the midpoints of the with accompanying boundary conditions

smectic layers. In generaly and u are functions of three +CV,(z=*+LI2)=he—rp(z= = L/2), (4a)
spatial coordinatesx(y,z), but here we assume the system

to be uniform in the X,y) plane and consider only a depen- do[L—2u(L/2)]=27N, (4b)
dence on distancenormal to the film. We take the Landau

free energy, per unit area, for the system to be whereN is the number of layers. The first boundary condi-

tion Eq. (4a) is obtained from variation of the free energy,
1 while the second condition E¢4b) follows on assuming that
r?+ §g¢4+ C(V4h) 2+ Ca3yA(V,u)? the phase of the order parameter at the surfaces is fixed in
order to guarantee that there is an integer number of layers in
1 the range ofz between—L/2 to L/2. We have used the fact
+ ErS[ JA(LI2)+ (= LI2)]—h p(LI12)+ y(—L/I2)], that the film is symmetrical about its midpoint &0, and
hence thaty(z) = #(—2), u(z)=—u(—2) and, as a conse-
(2 quenceu(0)=0. Note that the second boundary condition is

1 (L2
Fz—f dz
2
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the same as that used by de Genlriet for a “presmectic” 02
liquid confined between two walls, where it implies that the A=0
smectic layers at both film surfaces stick exactly to the walls. ¢
The same condition was also used for a free-standing smecti
film in [11], while the latter work used undetermined values 90
for ¢(=L/2).
The solution to the second Euler-Lagrange equation Eq<’: 0.1
(3b) can be expressed as §
= 0.2 A>0
z
u(z)=Adez’¢‘2(z’), (5) 03
0.4
where we usedi(0)=0. In view of Eq.(4b), the coefficient
A has to satisfy 0.5
0.0 0.5 1.0 1.5 2.0 3.0 3.5 4.0 4.5 5.0

Nd=L— 2Af dz' ¢~ 2(2"). (6)
Integrating Eq.(3a once yields
2 2 1 4 2 2.,—2
C(V) =14+ 594" = A°Capy "+ B, ()

where the constanB is chosen to satisfy the condition
V,4(0)=0 (which follows from symmetry and hence is
given by
B=—ry?(0)—3gy*(0)+A*Cqgy %(0).  (8)
Since the right-hand side of E() must be positive, antfor
r>0, g>0) is a monotonically increasing function ¢f, it
is necessary that(z)=(0) for all z. This in turn dictates

2.5
¥0)

FIG. 1. The functionH(¥(0),A) for r¢=-0.2, r=0.08, g
=0.04,hs=0, L/d=5, andC=1.

JC w2

2 1 4
HW(OLA= | | T+ 590

-3 (12

and wherey(L/2) is determined from Eq9).

The routine we have used for obtaining solutions to the
equations above is the following. First we scan over values
of A. For each trial value oA, we vary(0). Foreach value
of ¢(0), we determine all the real, positive solutions for
(L/2) from the roots of Eq(9). Although there may be
multiple roots of that equation, only one of thefifi any),
when used ag/(L/2) in Eq.(11), can satisfy the latter equa-

the sign ofV,¢ and hence the form of the first boundary tion for any given value ok. We then find that pair of values

condition Eq.(4a),

1/2
VC|ryA(Li2)+ ;Qlﬂ“(L/Z)—AZCquﬂ‘Z(L/ZH B

=hg—r(L/2). 9

of (0) and (L/2) which satisfies Eq(11). There can be
none, one or two such pairs. This is indicated by Fig. 1,
which shows typical curves of the functidr((0),A) vs
#(0) for hg=0 andr>r§/C, where the significance of the
latter conditions will be described in Sec. III. |W| is suffi-
ciently large, therH (#(0),A) is negative in the whole range
of #(0) and there is no solution pair. For some rang&Adf

The latter equation determines the value of the order paramhe maximum ofH ((0),A) as a function ofi(0) is posi-

etery(L/2) at the surface for given values Afand (0). If
a set of values oA, #(0), and(L/2) is known, theny(z)
can be found as the inverse function to

¥(2) 1 —12
z= \/Ef d¢[r¢2+ ng“—AZngz,b*ZJrB ,
#(0)
(10
which follows from Eq.(7). Settingz=L/2 in Eq. (10) pro-
vides an equation which together with E¢§) and (9) al-

lows one to determine the unknown quantitiesy(0), and
¢(L/2). That equation can be written as
H(¥(0),A)=0, 11

where we have defined the function

tive. There are two pairs of(0) and (L/2) in this case.
Both pairs correspond to physical solutions for different
thicknessesL of the film. If A=0 then the function
H(#(0),A) decays monotonically with increasing(0). In
this case, there can be none or one solution (la& point of
disappearance of a pair is considered in detail in Seg. IlI
Finally, in scanning oveA, we find that value ofA which
satisfies Eq(6). The integrand of Eq10) has an integrable
singularity at the lower limit proportional toy— y(0)]~ 2.
This term was subtracted out and integrated analytically. The
integration of the residual integral in E(LO) as well as that

in Eq. (6) were perfomed by Simpson’s method.

B. Equilibrium free energy

Once a solution to the Euler-Lagrange equations and
boundary conditions is known, the equilibrium free energy
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can be determined from E¢R). Using integration by parts
and rearranging the tergw?, the latter equation can be re-
written as

1 (L2 3 5 ) ,
inf,uzdszwgw — CyYVZ+CRY(V )2y

I

—(—LI2)Vp(—LI12) ]+ %fs[ YA(LI2)

1

4

/ 1
’ dzgy*+ = C[(LI2)V,p(L/I2)
L2 2

+ 2 (—LI2)]1—hd ¢(L/2) + y(— LI2)]. (13
At equilibrium, the integral term in the first line is equal to
zero due to Eq(3a. The nonintegral terms involving,
cancel each other because of the boundary conditions E

(49). Using symmetry, the last equation then gives for the

equilibrium free energy, denotéd.,

1

Feq=— 5

L/2
g fo dzy*(z) —hgy(L/2). (14)

This expression is significant for showing that the equilib-

PHYSICAL REVIEW E 63 031704

iting smectic order can occur, induced by thg surface
terms in the free energy for sufficiently sma# T—T*, pro-
vided r <0 [see Eq.(9)] [20]. At higher temperature, the
bulk contributions to the free energy become dominant and
smectic ordering disappears. For a fixed valuegfwe will
show that there is a “critical” line in the l(,T) plane at
which stable nontrivial solutions fogy and u develop. To
find this line, we examine the solutions of the simultaneous
equationg9) and(11). As seen in Fig. 1, the largest value of
H(y(0),A) occurs whermA=0 and(0)=0, while H tends
to the value—1/2 as (0)—o. A nontrivial solution for
#(0) exists only ifH(0,0)=0, and the critical locus corre-
sponds to the conditioki (0,0)=0.

To find the limit #(0)—0 of H((0),0), we express Eq.
(12) in terms of the variablge= / (0),

\/E Xmax dX
H((0),0= TL

qg.

1
\/r(xz— 1)+~ ggA0)(x*~ 1)

(17

rium free energy in the presence of smectic ordering is necwhere xma= #(L/2)/¢(0). Setting (0)=0, the integral

essarily negative for positive fields, andg.

can be evaluated analytically to give

The equilibrium free energy can also be expressed

through the work done by the external fiddg. To find that,

consider the variation of the free energy due to variations in

hs,

oF Shyl y(LI12)+ y(—L/2)], (15
where contributions resulting from any variatio®V (z)
about its equilibrium solution are zero. Integrating Ef)

yields

Feq=Feq(Ns=0)— johsdhwuz,hww<—L/2.h>],
(16)

wherey(z,h) is the solution to the Euler-Lagrange equations
for a given surface fielth. The second term in EA.6) is the
work done by the external field. Equati¢h6) generalizes an
expression given by de Genngisf]. Note that ifrg=0 and

g=0, then the smectic order in an overheated film is solelylp

due to the external field angl(L/2,hg)ochg, as can be shown
from Egs.(6), (9), and(10). In this case Eq(16) givesF,
=—hgy(L/2), in agreement with E¢L4).

Ill. FILM CRITICAL LINE

In this section we consider an overheated smectic film

with external fieldhg=0 but nonzero surface coupling con-
stantrg. We believe that these model conditions apply to

free-standing films, due to the fact that the Euler-Lagrange

equationg3a), (3b) and boundary condition@a) in this case
always admit a trivial solution(z) =0, corresponding to the

1 /C 1
H(0,0= E\/;In[)(max—'— \/sznax_ 1]- E’ (18

whereynaxiS to be calculated in the limit(0)— 0 from Eq.
(9). On squaring and expressing in termsygf.x, the latter
equation becomes

9Y2(0) X a2+ (r =1 2C) x 2 [T +g12(0)/2]=0.
(19

One can easily show that this equation has only one real,
positive root forymax [21]. The behavior of that root in the
limit 4(0)— 0 depends on the sign of the quannityrﬁ/C.

If r—r§/0<0, then ymax diverges|i.e., (L/2) tends to a
nonzero limif as (0)—0. In such a case, Eq18) shows
thatH(0,0) diverges logarithmically. Therefore, for anyn
this range and arbitrarl, there is always a solution to the
equationH (#(0),00=0 with nonzero values of)(0) and
(L/2). On the other hand, whem—r§/0>0, the solution
for xmay remains finite in the limit(0)—0. This finite so-
lution for ymax Must satisfy the equation comprised of the
nonvanishing terms of Eq19), namely,

(r=1/C) Xmax— =0, (20
and, hence, is given by
T
Xmax— =~ (219

r—1

absence of any smectic ordering. Nontrivial solutions exhibwhere
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"

cr &
=- 2 (7T, (21D 0

T=

r

SettingH(0,0)=0 in Eq. (18) with xmax given by Eg.
(219 yields the critical relation betweanandL for a given
value of the parametef;. Note that the critical locus in this
mean-field theory does not depend @nlLetting L., denote
the critical thickness at which the film disorders, for given
temperature and;, we have

(o3

50

200

Thickness (nm)
3

L 2
f: ?In[)(max'i' \/sznax_ 1], (223 100
S r

or, equivalently[22]

50

60 62 64 66 68 70
T(°C)
N¢ = In

: (22b)

265 [Vr+1
d\/? Vr—1 FIG. 2. Comparison of the power-law firiangles [5] with the
fit of Eq. (22b) for the critical film thickness vs temperature for the
whereNg, =L, /d. For a fixed temperaturé,, is the maxi-  compound 50.6. See the text for values of the fitting parameters.
mal thickness for which the film exhibits smectic ordering.
Note thatL., approaches infinity at the temperaturg for

o~ ) ciding with Tg. It is worthwhile noting, however, that the
whichr=1, given by

bulk transition temperatur@ 5y in [5] was determined by

r2 observing changes in the film meniscus. If the meniscus is
T=T*+ C_Sa' (23 considered to be a pile of smectic layers of varying step

length, then it is plausible on the basis of the present theory

(Despite the fact thaf, is quadratic ifr ., this expression is to expect that the observed changes in the meniscus occur

only valid for negativer.) These results imply that, accord- close toT, rather thanT’f. .
ing to the present theory, a smectic film of arbitrary thickness One other system W'th, a _bUIk Sm\‘ transition ha§ been
is stable relative to a film of isotropic liquid in the tempera- STOWnN to exhibit layer-thinning transitiori§], but this be-
ture rangeT<Ty, whereT, is larger than the bulk mean- haylor occurs over a small thickness range, wh|ph makes the
field transition temperatur&* . Thus we obtain the interest- fitting less reliable than for the data fB]. Equation(22b)
ing outcome that the surface-induced stability of the filmcan also be compared with experimental data for layer-
does not vanish with increasing film thickness. This is due tghinning transitions in compounds which undergo first-order
the fact that, forT*<T<T,, #(0)—0 asL—x, so that SMA-I transitions[1-4]. We find that the equation generally
there is no bulk free-energy penalty for forming a smecticfits the data quite well in these cases, with=T, where the
film of arbitrary thicknes$25]. This result in turn suggests latter is obtained from the power-law fit, although resulting
that, depending on the experimental conditions, measuran quite large differences~£5 °C) between the fitting values
ments of the “bulk” smectic transition temperature may in of T, andT*. Such differences could be expected due to the
fact detecfT s rather than the true transition temperatlife.  first-order nature of the bulk phase transition, since the
Here we compare the predictions of E@2b) with the  mean-field parametar=a(T—T*) should remain positive
experimental data df5] for the compound 50.6, which ex- at the bulk transition in such cases. The present model for the
hibits a very weak firSt'O.rder SN phase transition and bulk free energy in Eq(Z), however, is not app"cab|e with-
was reported to be well-fit by the power law,=1o(T/To  out further modification to smectic liquid crystals undergoing
—1) " with fitting parameters,=60.35°C,»=0.82, and first-order transitions, and we cannot make firm conclusions
lo=1.2 nm. Although Eq.22b has a different functional 5pout such cases here.
dependence, it also fits the reported experimental flalta  According to the recent findings in Refd.2,13, disloca-
very well and with the same number of fitting parametersyjon |oops spontaneously develop before the smectic order
For fitting purposes, we can exprass (T—T*)/(Ts—T*).  disappears across a film which undergoes layer thinning.
Figure 2 compares the power-law fit, represented by the triThis implies that the film “critical” points predicted by Eq.
angles, with that obtained using EQ@2b) (solid line), where (223 may be preempted by the growth of such loops, so that
the best-fit parameters are found to b&=2189.52 nm,T* Eq. (228 only provides an upper bound for the true layer-
=59.53°C, andTs=60.58°C. Note that thditted diver-  thinning transition temperatures. The next section supports
gence temperatureg, and T are quite close. If5], the the idea that, according to the present theory, during thinning
observed bulk SW-N transition temperaturd 5y was re-  either the order parameter becomes zero across the film,
ported to be 60.50 °C, in excess of our fitted mean-field tranprobably resulting in rupture of the film, or that dislocation
sition temperaturd* by approximately 1° but almost coin- loops develop.
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FIG. 3. The de Gennes transition from a four- to three-layer FIG. 4. The de Gennes transition from a five- to four-layer film,
film: g=rs=0, h4=0.2,r=0.04,C=1. with the same parameter values as in Fig. 3.

IV. de GENNES TRANSITION the free energy and are “stabilized” relative to each other by

It was stated by de Genngs4] that, on varying the film f[he presence of sufficiently large metasta_bi!ity bgrriers. This
thickness, a continuous transition frosto (N*=1) layers Interpretation was also used 1], where it is pointed out .
. . . . . that the thicknesk can be regarded as a free thermodynamic

can occur without nucleation of dislocation loops in a “pres-_ . . . . .
mectic” fluid confined between two solid walls. Here we v_arlabzle and that regions d’f\.N'th negative sec_ond deriva-
address the question of whether such a continuous transitidhY ViFeqare ther.modynan.ncally unstaplej,. since they cor-
is possible in the present model for free-standing films. wdespond to a negative effective compressibility modulus. Fig-
begin by considering de Gennes’ original mofist] in more ~ Ureé 5 shows the dependence of the free energy. dor r
detail, in whichrg=g=0 and smectic ordering at tempera- =0.04 (close to the Ipylk phase transnboand r=0.4 (far
tures above the bulk phase transitian>0) is due solely to from the phase transmc)r_ior the original de Qennes mo_del.
an external fielchg acting at the film surfaces. We note that. the analysis presentec i, 14 is only valid

Our solutions to the general modske Sec. )lenable us for £<L, which correspond_s to large O’.‘e Sees that the
to find profiles of the density modulation e for various curve forr=0.4 has the cosinelike behavior predicted by de
thicknesses.. Figures 3 and 4 show the continuous evolution
of the profiles a4 varies from a four- to three-layer film and -~
from a five- to four-layer film, respectively. The calculations -0t
were carried out folhg=0.2 andr=0.04 (using units for
which C=1). If a film with an initially odd number of layers
is compressed, the middle layer gradually disappears while 2
the other layers evolve into each other, although some sig-&
nature of the original middle layer remains for a range of &
thicknesses less thaiN( 1/2)d. In contrast to the develop-
ment of an edge dislocatidi6,17], the transition here from
Nto (N—1) layers takes place throughout the film, leaving it 4
uniform in the ky) plane. Thinning of an initially even-layer
film is different. In this case, the two original middle layers
merge into a single layer. An important aspect of these re- -05
sults is that the gradief,u of the strain diverges at the film . . . . ‘
midpoint while the order parameter(0)=0 whenL=(N 38 40 42 44 Ld 46 48 50 52
+1/2)d [14]. We will see that the nonlinear tergy* in the
bulk free energy does not change these results. FIG. 5. The dimensionless free enefgyscaled as described in

It was argued in8] that free-standing films containing Sec. I) of the de Gennes modefj&r,=0) for hy=0.2 and various
different numbers of layers correspond to local minima ofvalues ofr (C=1).

-0.3

Free en
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Gennes[14], with the width of the alternating stable and 00
unstable zones approximately equabi@ [11]. The regions

centered at. =Nd+0.5d are unstable. Figure 5 shows that 002

the zones of stability become narrower and the zones of in-
stability become wider while the amplitude of the oscilla-
tions increases with decreasing

The occurrence of the continuous “de Gennes transition
hinges on being able to achieve a maximum change in thick-g
nessAL|=|L—Nd| equal tod/2. Next we examine whether &

PHYSICAL REVIEW & 031704

-0.04
" ?—0.06 r

© -0.08 r

this is possible in the present model for free-standing films.

A. Maximal change in thickness

From Eq.(4b), the relative change in thicknedd./d can
be expressed in terms of the strain deformatigr) as

AL—l L/2 24
F-;QOU( ). (24

Expressingdz in terms ofdy using Eq.(7), the relation Eq.
(5) for u(z) can be written as

AVC (7 dzy
2 2(0) [1 172
n

u(z)=
Egn3+r772+ B77—A2Cq(2)
(25

where we defined the new variabje= /2. Substituting forB
from Eq. (8), this becomes

A\C (72
U(Z):TJ dn 7 Y n—n(0)] 2
7(0)
X ! 24 +1 0 +AZCQS o
97| T 5971( )| m 700)

(26)

Hence, the change in thickneAs is given by

AL Aqo\/E Xinax, -1 -1/2
F_T L dx x (X—l)
1 1 -1/2
x| 597°(0)x*+ r+§977(0))772(0)X+A2CQ3} :

(27)
where x=7(z)/7(0) and x2..= n(L/2)/7(0) as earlier.

Due tor andg being positive, an upper bound on the thick-

ness change is obtained in the [imig0)—0 and ymax
— o0, This yields

(IALI
d

1 (= dx

1
max_% 1 X\/X_l_z.

(28)

012 ¢

-0.14
3.8 4.0 4.2 44 4.6 4.3 5.0 5.2

L/d

FIG. 6. The dimensionless free enerfgyscaled as described in
Sec. ) vs thicknessL/d for hg=0, rg=—0.2, g=0.04 andr
=0.04, C=1).

and hence a continuous transition frodnto N+ 1 layers in
the sense of de Gennes, it is necessary {{at2) remains
nonzero as/(0)—0, so thaty,ax— -

An analysis of our more general model shows thahif
>0, theny(L/2) always remains nonzero @40) tends to
zero and therefore that\L|/d can reach 1/2. On the other
hand, if Cr>r2 and hs=0, then the ratioy(L/2)/¢(0)
= ymax 'emains finite ag/(0) tends to zero. In these circum-
stances, |AL|/d)hax<1/2 and a continuous transition from
Nto (N*1) layers is impossible. When the change in thick-
ness reaches its maximal values, the smectic order vanishes
over the width of the whole film and the film free energy
tends to zero. Figure 6 shows the dependence of the free
energyF on layer thicknesd./d, indicating that there are
“absolutely forbidden” regions of the thickne&s where the
free energy equals zero, which separate films of thicknesses
Nd and (N=1)d. These findings show that a continuous de
Gennes transition fro to (N= 1) layers is possible only if
hs>0. Otherwise, when the thickness reaches the forbidden
zones, either the smectic order parameter becomes zero
across the whole film, probably resulting in film rupturing, or
dislocation loops develop. The present considerations cannot
distinguish between these scenarios, which require a dynami-
cal treatment allowing for inhomogeneities in the plane of
the film.

V. DISCUSSION

In summary, we have modified de Gennes’ theld4] of
a “presmectic” fluid confined between two walls, generaliz-
ing the surface contribution to the free energy by including
quadratic terms in the surface order parameiet L/2). The
coefficientrg of these terms is considered to be an intrinsic
property of the liquid-crystalline material. In contrast with
theories which attribute surface-induced smeégtiordering

Therefore, regardless of the nonlinear or surface contributo external-field-like coupling termg7,14], the present
tions, the magnitude of the thickness change associated withhodel always exhibits a trivial solution corresponding to the

the strainu(z) cannot exceedl/2 in our model for free-

standing films. In order to achieve the maximum chadége

absence of any smectic ordering. For negative valuas of
films with smectic order can be stabilized for a finite range of

031704-7
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temperatures above the bulk transition temperature. Theresuch a nucleation process starts when the difference between
fore, the present theory attributes the distinction betweetthe depths of the free-energy wells fdi+1 and N-layer
smectic materials which exhibit layer-thinning phenomendilms (see Fig. 6 becomes larger than the free-energy cost
and those which do not to the sign of the surface couplingper unit area due to the line tension associated with the
constantr. An interesting and unexpected finding is that dislocation loopg23,24].

T.(N) tends to a valug ;>T* rather than to the bulk tran- Although the origin of the surface parametegris beyond
sition temperaturél* with increasingN, and that films of the scope of this paper, several plausible mechanisms for it
arbitrary thickness can be stabilized at all temperatlres can be envisioned. One is due to coupling between
<T,. This persistent finite-size effect is due to the fact thatorientation-dependent molecular interactions and transla-
surface-induced smectic ordering beldw is confined to a tional symmetry breaking at the free surfaces of the féh
surface region of characteristic leng#y and produces no Fluctuation effects could also play a role, as first pointed out
bulk free-energy penalty in the limit of infinite thickneks by Selinger and Nelsofi26] in a related context. Fluctua-

In the original de Gennes modEl4], a presmectic film tions of the smectic layers can affect the observed smectic
can have a thicknedsdifferent fromNd, and the dilation or  order parameten//(z)exp[—qé(u(z)2>/2] by quenching the
compression of the film can be as much as half the smectimean-square fluctuatiosi(z)?) of the layer-displacement
layer spacing, which allows for a continuous transition fromfield u(z) near the surfaces, due to the presence of surface
N to (N*=1) layers. We have analyzed the maximal com-tension[27-29. These fluctuation effects are not yet fully
pression and dilation which can occur in the present modelinderstood, but might be represented by corrections to the
and found that such a continuous transition is only possibléemperature variable In the smectic phase, the mean-square
when the external fieldhs is nonzero. Films with free sur- fluctuation(u?) has a profile[27—29 which is flat in the
faces, for which we have argued thla=0, cannot have middle of a film and very steep near the film surfaces, which
arbitrary values of the thickness due to the existence of forimplies that there is an effective correction towhich is
bidden zones that divide the allowed zones centered at localized at the surfaces and hence represented by the surface
=Nd. The smectic order parameter vanishes across the filmoupling constant.
as the thickness approaches the edges of the allowed zones,
which we presume must lead either to film rupture or to the
nucleation of dislocation loops. The latter possibility accords
with the recent experimental observations of dislocation This study was supported by the Natural Sciences and
loops during thinning transitionsl3,12. It is plausible that Engineering Research CounéCanada
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